surfaces\(^{358}\). A new method using an invisible fluorescent marker to objectively evaluate the thoroughness of cleaning activities in patient rooms might lead to improvement in cleaning of all objects and surfaces but needs further evaluation.\(^{360}\)

Lastly, does the use of antiseptics or disinfectants facilitate the development of disinfectant-tolerant organisms? Evidence and reviews indicate enhanced tolerance to disinfectants can be developed in response to disinfectant exposure\(^{334, 335, 346, 347, 361}\). However, the level of tolerance is not important in clinical terms because it is low and unlikely to compromise the effectiveness of disinfectants of which much higher concentrations are used\(^{347, 362}\).

The issue of whether low-level tolerance to germicides selects for antibiotic-resistant strains is unsettled but might depend on the mechanism by which tolerance is attained. For example, changes in the permeability barrier or efflux mechanisms might affect susceptibility to both antibiotics and germicides, but specific changes to a target site might not. Some researchers have suggested that use of disinfectants or antiseptics (e.g., triclosan) could facilitate development of antibiotic-resistant microorganisms\(^{334, 335, 363}\). Although evidence in laboratory studies indicates low-level resistance to triclosan, the concentrations of triclosan in these studies were low (generally <1 µg/mL) and dissimilar from the higher levels used in antimicrobial products (2,000–20,000 µg/mL)\(^{364, 365}\). Thus, researchers can create laboratory-derived mutants that demonstrate reduced susceptibility to antiseptics or disinfectants. In some experiments, such bacteria have demonstrated reduced susceptibility to certain antibiotics\(^{335}\). There is no evidence that using antiseptics or disinfectants selects for antibiotic-resistant organisms in nature or that such mutants survive in nature\(^{366}\). In addition, the action of antibiotics and the action of disinfectants differ fundamentally. Antibiotics are selectively toxic and generally have a single target site in bacteria, thereby inhibiting a specific biosynthetic process. Germicides generally are considered nonspecific antimicrobials because of a multiplicity of toxic-effect mechanisms or target sites and are broader spectrum in the types of microorganisms against which they are effective\(^{344, 347}\).

The rotational use of disinfectants in some environments (e.g., pharmacy production units) has been recommended and practiced in an attempt to prevent development of resistant microbes\(^{367, 368}\). There have been only rare case reports that appropriately used disinfectants have resulted in a clinical problem arising from the selection or development of nonsusceptible microorganisms\(^{369}\).

Surface Disinfection

The effective use of disinfectants is part of a multibarrier strategy to prevent health-care–associated infections. Surfaces are considered noncritical items because they contact intact skin. Use of noncritical items or contact with noncritical surfaces carries little risk of causing an infection in patients or staff. Thus, the routine use of germicidal chemicals to disinfect hospital floors and other noncritical items is controversial\(^{370-375}\). A 1991 study expanded the Spaulding scheme by dividing the noncritical environmental surfaces into housekeeping surfaces and medical equipment surfaces\(^{376}\). The classes of disinfectants used on housekeeping and medical equipment surfaces can be similar. However, the frequency of decontaminating can vary (see Recommendations). Medical equipment surfaces (e.g., blood pressure cuffs, stethoscopes, hemodialysis machines, and X-ray machines) can become contaminated with infectious agents and contribute to the spread of health-care–associated infections\(^{248, 375}\). For this reason, noncritical medical equipment surfaces should be disinfected with an EPA-registered low- or intermediate-level disinfectant. Use of a disinfectant will provide antimicrobial activity that is likely to be achieved with minimal additional cost or work.

Environmental surfaces (e.g., bedside table) also could potentially contribute to cross-transmission by contamination of health-care personnel from hand contact with contaminated surfaces, medical equipment, or patients\(^{50, 375, 377}\). A paper reviews the epidemiologic and microbiologic data (Table 3) regarding the use of disinfectants on noncritical surfaces\(^{378}\).
Of the seven reasons to use a disinfectant on noncritical surfaces, five are particularly noteworthy and support the use of a germicidal detergent. First, hospital floors become contaminated with microorganisms from settling airborne bacteria: by contact with shoes, wheels, and other objects; and occasionally by spills. The removal of microbes is a component in controlling health-care–associated infections. In an investigation of the cleaning of hospital floors, the use of soap and water (80% reduction) was less effective in reducing the numbers of bacteria than was a phenolic disinfectant (94%–99.9% reduction)\(^\text{379}\). However, a few hours after floor disinfection, the bacterial count was nearly back to the pretreatment level. Second, detergents become contaminated and result in seeding the patient’s environment with bacteria. Investigators have shown that mop water becomes increasingly dirty during cleaning and becomes contaminated if soap and water is used rather than a disinfectant. For example, in one study, bacterial contamination in soap and water without a disinfectant increased from 10 CFU/mL to 34,000 CFU/mL after cleaning a ward, whereas contamination in a disinfectant solution did not change (20 CFU/mL)\(^\text{380}\). Contamination of surfaces close to the patient that are frequently touched by the patient or staff (e.g., bed rails) could result in patient exposures\(^\text{381}\). In a study, using of detergents on floors and patient room furniture, increased bacterial contamination of the patients’ environmental surfaces was found after cleaning (average increase = 103.6 CFU/24cm\(^2\))\(^\text{382}\). In addition, a \(P.\ aeruginosa\) outbreak was reported in a hematology-oncology unit associated with contamination of the surface cleaning equipment when nongermicidal cleaning solutions instead of disinfectants were used to decontaminate the patients’ environment\(^\text{383}\) and another study demonstrated the role of environmental cleaning in controlling an outbreak of \(Acinetobacter baumannii\)\(^\text{384}\). Studies also have shown that, in situations where the cleaning procedure failed to eliminate contamination from the surface and the cloth is used to wipe another surface, the contamination is transferred to that surface and the hands of the person holding the cloth\(^\text{381, 385}\). Third, the CDC Isolation Guideline recommends that noncritical equipment contaminated with blood, body fluids, secretions, or excretions be cleaned and disinfected after use. The same guideline recommends that, in addition to cleaning, disinfection of the bedside equipment and environmental surfaces (e.g., bedrails, bedside tables, carts, commodes, door-knobs, and faucet handles) is indicated for certain pathogens, e.g., enterococci, which can survive in the inanimate environment for prolonged periods\(^\text{386}\). Fourth, OSHA requires that surfaces contaminated with blood and other potentially infectious materials (e.g., amniotic, pleural fluid) be disinfected. Fifth, using a single product throughout the facility can simplify both training and appropriate practice.

Reasons also exist for using a detergent alone on floors because noncritical surfaces contribute minimally to endemic health-care–associated infections\(^\text{387}\), and no differences have been found in health-care–associated infection rates when floors are cleaned with detergent rather than disinfectant\(^\text{382, 388, 389}\). However, these studies have been small and of short duration and suffer from low statistical power because the outcome—health-care–associated infections—is of low frequency. The low rate of infections makes the efficacy of an intervention statistically difficult to demonstrate. Because housekeeping surfaces are associated with the lowest risk for disease transmission, some researchers have suggested that either detergents or a disinfectant/detergent could be used\(^\text{376}\). No data exist that show reduced health-care–associated infection rates with use of surface disinfection of floors, but some data demonstrate reduced microbial load associated with the use of disinfectants. Given this information; other information showing that environmental surfaces (e.g., bedside table, bed rails) close to the patient and in outpatient settings\(^\text{390}\) can be contaminated with epidemiologically important microbes (such as VRE and MRSA)\(^\text{391-394}\); and data showing these organisms survive on various hospital surfaces\(^\text{395, 396}\); some researchers have suggested that such surfaces should be disinfected on a regular schedule\(^\text{378}\). Spot decontamination on fabrics that remain in hospitals or clinic rooms while patients move in and out (e.g., privacy curtains) also should be considered. One study demonstrated the effectiveness of spraying the fabric with 3% hydrogen peroxide\(^\text{397}\). Future studies should evaluate the level of contamination on noncritical environmental surfaces as a function of high and low hand contact and whether some surfaces (e.g., bed rails) near the patient with high contact frequencies require more frequent disinfection. Regardless of whether a detergent or disinfectant is used on surfaces in a health-care facility, surfaces should be cleaned routinely and when dirty or soiled to provide an aesthetically pleasing environment and to prevent potentially contaminated objects from serving as a source for health-care–associated infections\(^\text{398}\). The value of designing surfaces (e.g., hexyl-polyvinylpyridine) that kill bacteria.
on contact or have sustained antimicrobial activity should be further evaluated.

Several investigators have recognized heavy microbial contamination of wet mops and cleaning cloths and the potential for spread of such contamination. They have shown that wiping hard surfaces with contaminated cloths can contaminate hands, equipment, and other surfaces. Data have been published that can be used to formulate effective policies for decontamination and maintenance of reusable cleaning cloths. For example, heat was the most reliable treatment of cleaning cloths as a detergent washing followed by drying at 80°C for 2 hours produced elimination of contamination. However, the dry heating process might be a fire hazard if the mop head contains petroleum-based products or lint builds up within the equipment or vent hose (American Health Care Association, personal communication, March 2003). Alternatively, immersing the cloth in hypochlorite (4,000 ppm) for 2 minutes produced no detectable surviving organisms in 10 of 13 cloths. If reusable cleaning cloths or mops are used, they should be decontaminated regularly to prevent surface contamination during cleaning with subsequent transfer of organisms from these surfaces to patients or equipment by the hands of health-care workers. Some hospitals have begun using a new mopping technique involving microfiber materials to clean floors. Microfibers are densely constructed, polyester and polyamide (nylon) fibers, that are approximately 1/16 the thickness of a human hair. The positively charged microfibers attract dust (which has a negative charge) and are more absorbent than a conventional, cotton-loop mop. Microfiber materials also can be wet with disinfectants, such as quaternary ammonium compounds. In one study, the microfiber system tested demonstrated superior microbial removal compared with conventional string mops when used with a detergent cleaner (94% vs 68%). The use of a disinfectant did not improve the microbial elimination demonstrated by the microfiber system (95% vs 94%). However, use of disinfectant significantly improved microbial removal when a conventional string mop was used (95% vs 68%) (WA Rutala, unpublished data, August 2006). The microfiber system also prevents the possibility of transferring microbes from room to room because a new microfiber pad is used in each room.

An important issue concerning use of disinfectants for noncritical surfaces in health-care settings is that the contact time specified on the label of the product is often too long to be practically followed. The labels of most products registered by EPA for use against HBV, HIV, or M. tuberculosis specify a contact time of 10 minutes. Such a long contact time is not practical for disinfection of environmental surfaces in a health-care setting because most health-care facilities apply a disinfectant and allow it to dry (~1 minute). Multiple scientific papers have demonstrated significant microbial reduction with contact times of 30 to 60 seconds. In addition, EPA will approve a shortened contact time for any product for which the manufacturers will submit confirmatory efficacy data.

Currently, some EPA-registered disinfectants have contact times of one to three minutes. By law, users must follow all applicable label instructions for EPA-registered products. Ideally, product users should consider and use products that have the shortened contact time. However, disinfectant manufacturers also need to obtain EPA approval for shortened contact times so these products will be used correctly and effectively in the health-care environment.

Air Disinfection

Disinfectant spray-fog techniques for antimicrobial control in hospital rooms has been used. This technique of spraying of disinfectants is an unsatisfactory method of decontaminating air and surfaces and is not recommended for general infection control in routine patient-care areas. Disinfectant fogging is rarely, if ever, used in U.S. healthcare facilities for air and surface disinfection in patient-care areas. Methods (e.g., filtration, ultraviolet germicidal irradiation, chlorine dioxide) to reduce air contamination in the healthcare setting are discussed in another guideline.